Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[bis(dimethylazanium) [[chloridocopper(II)]-di-μ-chlorido-[chloridocopper(II)]-di-μ-azido-κ⁴N:N]]

Wei-Yi Zhang,^a Li Yang^b and Jie Liu^{c*}

^aDepartment of Obstetrics and Gynecology, The First Affiliated Hospital of Henan University, of Traditional Chinese Medicine, Zhengzhou, 450008, People's Republic of China, ^bHenan Medical College for Staff and Workers, Zhengzhou, 451191, People's Republic of China, and ^cDepartment of Urology, Henan Provincial People's Pospital, Zhengzhou, 450003, People's Republic of China Correspondence e-mail: liu_jie1011@163.com

Received 11 September 2011; accepted 24 November 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (N–C) = 0.005 Å; R factor = 0.027; wR factor = 0.066; data-to-parameter ratio = 21.3.

The crystal structure of the title complex, $\{(C_2H_8N)-[CuCl_2(N_3)]\}_n$, exhibits inorganic chains consisting of Cu(II) cations as well azide and chloride anions. The chains, made up from Cu-Cl-Cu-N-Cu linkages, are aligned parallel to the *c* axis. This architecture is further stabilized by a number of N-H···Cl hydrogen bonds involving the protonated charge-compensating dimethylamine cations and chloride atoms.

Related literature

For background to polynuclear complexes, see Goher *et al.* (2000); Liu *et al.* (2008); Ribas *et al.* (1994); Saha *et al.* (2005); Vicente *et al.* (1993); Wang *et al.* (2008). For di- or polyalkylamines as templates, see: Cheetham *et al.* (1999); Hagrman *et al.* (1999). For related copper(II) complexes, see: Mautner *et al.* (1999).

Experimental

Crystal data $(C_2H_8N)[CuCl_2(N_3)]$ $M_r = 222.57$ Monoclinic, C2/c a = 15.348 (5) Å b = 11.089 (2) Å c = 10.729 (2) Å $\beta = 119.73$ (2)°

 $V = 1585.7 (7) \text{ Å}^{3}$ Z = 8Mo K\alpha radiation $\mu = 3.35 \text{ mm}^{-1}$ T = 298 K $0.14 \times 0.10 \times 0.08 \text{ mm}$

```
metal-organic compounds
```

 $R_{\rm int} = 0.025$

3510 measured reflections

1811 independent reflections

1251 reflections with $I > 2\sigma(I)$

Data collection

Bruker APEXII CCD

```
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
T_{min} = 0.651, T_{max} = 0.775
```

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.027 & 13 \text{ restraints} \\ wR(F^2) = 0.066 & H\text{-atom parameters constrained} \\ S = 0.94 & \Delta\rho_{\max} = 0.41 \text{ e } \text{\AA}^{-3} \\ 1811 \text{ reflections} & \Delta\rho_{\min} = -0.38 \text{ e } \text{\AA}^{-3} \\ 85 \text{ parameters} \end{array}$

Table 1

Selected bond lengths (Å).

Cu1-N1 ⁱ	1.987 (2)	Cu1-Cl1	2.2729 (9)
Cu1-N1	2.002 (2)	Cu1-Cl1 ⁱⁱ	2.8860 (13)
Cu1-Cl2	2.2527 (8)	Cu1-Cu1 ⁱ	3.1460 (7)

Symmetry codes: (i) -x, -y + 1, -z; (ii) $-x, y, -z + \frac{1}{2}$.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N4-H1···Cl1 ⁱⁱⁱ	0.99	2.41	3.331 (3)	154
$N4-H2\cdots Cl2^{ii}$	0.87	2.50	3.257 (3)	146
$N4 - H2 \cdot \cdot \cdot Cl1$	0.87	2.82	3.270 (2)	114
$N4 - H2 \cdots Cl2$	0.87	2.92	3.340 (3)	112

Symmetry codes: (ii) $-x, y, -z + \frac{1}{2}$; (iii) $-x - \frac{1}{2}, -y + \frac{1}{2}, -z$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

This study was supported by the Doctoral Research Fund of Henan Chinese Medicine (BSJJ2009–42).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZB2020).

References

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268–3292.
- Goher, M. A. S., Cano, J., Journaux, Y., Abu-Youssef, M. A. M., Mautner, F. A., Escuer, A. & Vicente, R. (2000). *Chem. Eur. J.* 6, 778–784.

Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684.

Liu, T., Yang, Y. F., Wang, Z. M. & Gao, S. (2008). *Chem. Asian J.* **3**, 950–957. Mautner, F. A., Hanna, S., Cortes, R., Lezama, L., Barandika, M. G. & Rojo, T. (1999). *Inorg. Chem.* **38**, 4647–4652.

Ribas, J., Monfort, M., Diaz, C., Bastos, C. & Solans, X. (1994). *Inorg. Chem.* 33, 484–489.

Saha, S., Koner, S., Tuchagues, J. P., Boudalis, A. K., Okamoto, K. I., Banerjee, S. & Mal, D. (2005). *Inorg. Chem.* 44, 6379–6385.

Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Vicente, R., Escuer, A., Ribas, J., Fallah, M. S., Solans, X. & Font-Bardid, M. (1993). Inorg. Chem. 32, 1920–1924.

Wang, X. Y., Wang, Z. M. & Gao, S. (2008). Chem. Commun. pp. 281–294. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

supplementary materials

Acta Cryst. (2011). E67, m1877-m1878 [doi:10.1107/S1600536811050537]

catena-Poly[bis(dimethylazanium) [[chloridocopper(II)]-di- μ -chlorido-[chloridocopper(II)]-di- μ -azido- $\kappa^4 N:N$]]

W.-Y. Zhang, L. Yang and J. Liu

Comment

It is well known that the azide ion is a versatile ligand, and its versatility and efficiency lie in its functionality as a terminal monodentate and a bridging bi-, tri-, and tetradentate ligand. Because of this unique capability, azide attracts a lot of attention in the design of mono- or multidimensional metal-assembled azido complexes. (Vicente *et al.*, 1993; Ribas *et al.*, 1994; Goher *et al.*, 2000; Saha *et al.*, 2005; Liu *et al.*, 2008). Having control over the molecular dimensions and geometry of the metal-ligand moiety in the compounds may lead to the control over their magnetic properties.(Wang *et al.*, 2008). Di- or polyalkylamines, if protonated, could be conveniently used as cationic templates, and they have been widely employed in making metal oxalates, metal phosphates, and oxometalates.(Cheetham *et al.*, 1999; Hagrman *et al.*, 1999).In order to study the coordination behavior of the azide ion and templates, we synthesized herein the title complex [(NH₂(CH₃)₂)(CuN₃Cl₂)]_n. As shown in Figure 1, each asymmetric unit contains one Cu(II) atom, two chloride atoms, one azide atom and one dimethylamine cation. This architecture is further stabilized by a number of N—H···Cl hydrogen bonds involving the protonated charge-compensating dimethylamine cations and chloride atoms.(Figure 2). The bond distances for Cu—N are 1.984 (2) and 2.001 (2) Å, respectively. and the angles for N—Cu—Cl are between 92.86 (6) and 167.48 (6)°. The Cu—Cl bond lengths are 2.2526 (8) Å, 2.2725 (10) Å, respectively. and the bond angles for N—Cu—N and Cl—Cu—Cl are 75.74 (10) and 94.61 (2)°, respectively. These bond distances and bond angles are in agreement with those found in the reported copper compounds(Mautner *et al.*, 1999).

Experimental

A mixture of methanol and water (1:1, 2 ml) was gently layered on the top of a solution of $Cu(ClO_4)_2.6H_2O$ (37.1 mg, 0.1 mmol) in water (3 ml). A solution of dimethylamine (18 mg, 0.4 mmol), NaN₃ (13 mg, 0.2 mmol) and hydrochloric acid (40.5 mg, 0.4 mmol, 36%) in methanol (10 ml) was added carefully as the third layer. Green crystals were obtained after 3 weeks, washed with ethanol and ether, and dried in air.

Refinement

During refinement, H atoms were placed in calculated positions and allowed to ride, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(C)$.

Data collection: *APEX2*(Bruker, 2007); cell refinemnet: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(*s*) used to solve structures: *SHELXS97*(Sheldrick, 2008); program(*s*) used to refine structures: *SHELXL97*(Sheldrick, 2008); molecular graphics: *SHELXTL*(Sheldrick, 2008); software used to prepare material for publication: *publCIF*.

Figures

Fig. 1. The molecular structure for title compound. Displacement ellipsoids at the 30% probability level. Symmetry codes: (i) -x, -y + 1, -z

catena-Poly[bis(dimethylazanium) [[chloridocopper(II)]-di- μ -chlorido-[chloridocopper(II)]-di- μ -azido- $\kappa^4 N:N$]]

F(000) = 888
$D_{\rm x} = 1.865 {\rm Mg m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 1037 reflections
$\theta = 2.6 - 24.6^{\circ}$
$\mu = 3.35 \text{ mm}^{-1}$
T = 298 K
Block, green
$0.14 \times 0.10 \times 0.08 \ mm$

Data collection

Bruker APEXII CCD diffractometer	1811 independent reflections
Radiation source: fine-focus sealed tube	1251 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.025$
phi and ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.7^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2003)	$h = -19 \rightarrow 19$
$T_{\min} = 0.651, \ T_{\max} = 0.775$	$k = -14 \rightarrow 14$
3510 measured reflections	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.027$	H-atom parameters constrained
$wR(F^2) = 0.066$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0361P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 0.94	$(\Delta/\sigma)_{\rm max} = 0.012$
1811 reflections	$\Delta \rho_{max} = 0.41 \text{ e } \text{\AA}^{-3}$
85 parameters	$\Delta \rho_{min} = -0.38 \text{ e} \text{ Å}^{-3}$

13 restraints Extinction correction: *SHELXL*, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0036 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	-0.03408 (2)	0.39407 (3)	0.06367 (3)	0.03133 (14)
Cl1	-0.14064 (5)	0.39423 (5)	0.15347 (8)	0.03677 (18)
C12	-0.03672 (5)	0.19228 (5)	0.03779 (7)	0.0404 (2)
N1	-0.04383 (19)	0.57303 (19)	0.0352 (3)	0.0409 (6)
N2	-0.08322 (18)	0.64469 (19)	0.0760 (3)	0.0388 (6)
N3	-0.1205 (2)	0.7121 (2)	0.1134 (3)	0.0659 (9)
N4	-0.1737 (2)	0.1071 (2)	0.1860 (3)	0.0492 (6)
H1	-0.2164	0.1291	0.0834	0.059*
H2	-0.1180	0.1479	0.2287	0.059*
C1	-0.1482 (3)	-0.0211 (3)	0.1877 (4)	0.0631 (9)
H1A	-0.1133	-0.0496	0.2850	0.095*
H1B	-0.1062	-0.0303	0.1455	0.095*
H1C	-0.2087	-0.0669	0.1337	0.095*
C2	-0.2303 (3)	0.1339 (3)	0.2608 (4)	0.0579 (8)
H2A	-0.2921	0.0894	0.2167	0.087*
H2B	-0.2446	0.2186	0.2544	0.087*
H2C	-0.1911	0.1110	0.3598	0.087*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters (A^2)	
----------------------------------	-------	---	--

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0392 (2)	0.02505 (19)	0.0368 (2)	0.00100 (14)	0.02419 (17)	0.00218 (13)
Cl1	0.0405 (4)	0.0355 (4)	0.0434 (4)	0.0016 (3)	0.0277 (3)	0.0042 (3)
Cl2	0.0520 (5)	0.0270 (3)	0.0459 (5)	-0.0020 (3)	0.0271 (4)	-0.0012 (3)
N1	0.0609 (17)	0.0280 (11)	0.0535 (16)	0.0035 (10)	0.0433 (14)	0.0048 (10)
N2	0.0495 (15)	0.0285 (12)	0.0501 (16)	0.0050 (10)	0.0336 (13)	0.0062 (10)
N3	0.087 (2)	0.0483 (17)	0.092 (2)	0.0157 (15)	0.067 (2)	0.0034 (14)
N4	0.0569 (14)	0.0425 (11)	0.0524 (14)	-0.0084 (10)	0.0303 (11)	-0.0003 (9)
C1	0.0676 (17)	0.0421 (14)	0.0641 (17)	-0.0036 (14)	0.0208 (15)	0.0025 (13)

supplementary materials

C2	0.0592 (17)	0.0641 (15)	0.0575 (17)	-0.0108 (14)	0.0342 (14)	0.0001 (13)
Geometric param	neters (Å, °)					
Cu1—N1 ⁱ		1.987 (2)	N4—	C1		1.471 (4)
Cu1—N1		2.002 (2)	N4—	C2		1.477 (4)
Cu1—Cl2		2.2527 (8)	N4—	H1		0.9931
Cu1—Cl1		2.2729 (9)	N4—	H2		0.8693
Cu1—Cl1 ⁱⁱ		2.8860 (13)	C1—1	H1A		0.9600
Cu1—Cu1 ⁱ		3.1460 (7)	C1—1	H1B		0.9600
Cl1—Cu1 ⁱⁱ		2.8860 (13)	C1—1	H1C		0.9600
N1—N2		1.205 (3)	C2—1	H2A		0.9600
N1—Cu1 ⁱ		1.987 (2)	C2—1	H2B		0.9600
N2—N3		1.129 (3)	C2—]	H2C		0.9600
N1 ⁱ —Cu1—N1		75.87 (10)	N3—	N2—N1		179.6 (3)
N1 ⁱ —Cu1—Cl2		95.48 (7)	C1—1	N4—C2		114.3 (2)
N1—Cu1—Cl2		166.02 (7)	C1—1	N4—H1		106.0
N1 ⁱ —Cu1—Cl1		167.54 (7)	C2—]	N4—H1		108.0
N1—Cu1—Cl1		92.79 (7)	C1—1	N4—H2		108.1
Cl2—Cu1—Cl1		94.60 (3)	C2—1	N4—H2		107.4
$N1^i\!-\!Cu1\!-\!Cl1^{ii}$		94.01 (8)	H1—	N4—H2		113.1
N1—Cu1—Cl1 ⁱⁱ		96.89 (7)	N4—	C1—H1A		109.5
Cl2—Cu1—Cl1 ⁱⁱ		94.63 (2)	N4	С1—Н1В		109.5
Cl1—Cu1—Cl1 ⁱⁱ		92.46 (3)	H1A-	C1H1B		109.5
N1 ⁱ —Cu1—Cu1 ⁱ		38.11 (6)	N4	С1—Н1С		109.5
N1—Cu1—Cu1 ⁱ		37.76 (7)	H1A-	C1H1C		109.5
Cl2—Cu1—Cu1 ⁱ		132.67 (3)	H1B-	C1H1C		109.5
Cl1—Cu1—Cu1 ⁱ		130.36 (2)	N4	C2—H2A		109.5
Cl1 ⁱⁱ —Cu1—Cu1 ⁱⁱ	i	96.92 (2)	N4	С2—Н2В		109.5
Cu1—Cl1—Cu1 ⁱⁱ		87.54 (3)	H2A-	—С2—Н2В		109.5
N2—N1—Cu1 ⁱ		128.05 (19)	N4—	C2—H2C		109.5
N2—N1—Cu1		127.70 (19)	H2A-	—С2—Н2С		109.5
Cu1 ⁱ —N1—Cu1		104.13 (10)	H2B-	—С2—Н2С		109.5
Symmetry codes:	(i) − <i>x</i> , − <i>y</i> +1, − <i>z</i> ; (ii)	-x, y, -z+1/2.				

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A		
N4—H1…Cl1 ⁱⁱⁱ	0.99	2.41	3.331 (3)	154.		
N4—H2···Cl2 ⁱⁱ	0.87	2.50	3.257 (3)	146.		
N4—H2…Cl1	0.87	2.82	3.270 (2)	114.		
N4—H2···Cl2	0.87	2.92	3.340 (3)	112.		
Symmetry codes: (iii) $-x-1/2$, $-y+1/2$, $-z$; (ii) $-x$, y , $-z+1/2$.						

